 RAJONO CENTRAS

Co-funded by the Erasmus+ Programme of the European Union
Robotics vs Bullying

PANEVĖŽYS DISTRICT EDUCATION CENTER

COMMUNITY ALGORITHM IN A ROBOT'S BACKPACK

METODICAL PUBLICATION

PANEVĖŽYS DISTRICT EDUCATION CENTER

COMMUNITY ALGORITHM IN A ROBOT'S BACKPACK

METODICAL PUBLICATION

Co-funded by the Erasmus+ Programme of the European Union

Robotics vs Bullying

Layout designer
Laura Šinkūnienė
Language editor
Birutė Goberienė

English Translation

Vaida Šiaučiūnė

The publication prepared by Panevèžys District Education Center Funded by ERASMUS+ project
Robotics versus Bullying

2023, Naujamiestis town.
© Panevėżys District Education Center
© Laura Šinkūnienė
\qquad

It would be extremely hard to find a field which is not yet been tested or accompanied by robots these days. Robotics is no longer just a theory of the future; it is a part of our present reality. Robotics in education is particularly effective in engaging children who are attracted by smart innovation and a hands-on approach to learning. This is an immersive tool that makes the abstract and complex concepts of science and technology easier to understand, meanwhile developing creative thinking and coordinating teamwork.

Depending on the different interests and learning abilities, each child can be assigned a separate work task: to design, to construct or to code. For teachers it is a great tool for enabling collaborative activities, developing students' leadership skills, teamwork mindset, facilitating socialization.

This methodical publication Community Algorithm In A Robot's Backpack is a source of ideas which came out from the friendship between the educational robots and the Preschool and Primary school teachers and librarians of Panevėžys city and Panevėžys district. We have included practical tasks and tools that we developed and tested together with our students in this robot's backpack. Engaging activities allow children to solve problems in a fun and stress-free way simultaneously performing programming tasks, developing algorithmic thinking, creatively searching for optimal solutions, harmonious communicating and cooperating in the team.

We hope that there will be no shortage of new discoveries and improvisations in your lessons!

Having programmed the robot according to the indicated arrows perform the tasks hidden in the boxes.
3-7
year old
Calculation, programming, arts, programming, arts
physical activity

Robot, robot grid with cards, 2 dices, various art and group activity tools

30-40 mins.

Getting started: cards are placed on the robot grid and the gameplay is explained.

Tasks:

- Two dices are rolled.
- Points rolled are counted.
- The card of the resulting sequence of arrows is selected.
- Following the specified sequence, the robot is programmed.
- It is considered what other way the robot could arrive at the same card.
- The task indicated on the card is performed.
- Another child repeats the steps.
- Is there another way to achieve the goal?
- Is this the shortest path?

Arrow sequence cards
Arrow sequence cards

Make a greeting card for your friend

Place a piece of paper on the ground and draw a picture

Choose and wash one toy

Fold the paper airplane and decorate it

Color the selected picture with all the colors you

Go slowly foot after foot and get a drink of water

Draw the outline of your palm, cut it out and decorate it

Author: Preschool teacher INGA BALTRIMAVIČIENĖ Panevėžys district Velžys nursery-kindergarten ŠYPSENÉLĖ

When programming the robot, make your way from the START to the END and complete the tasks provided.

4-6
year old

Calculation, logical thinking, cooperation

30 mins.

Robot, robot grid, picture cards, robot markers, game dice .

Getting started: children choose how they want to label their robots with to distinguish them. If more children are playing, they are divided into teams, roles are assigned (who will program the robot, who will play the dice, who will complete the tasks). The rules of the game are discussed.

Tasks:

- The robots are placed on the START field.
- The child rolls the game dice and foresees the robot's path. The robot is programmed for as many steps as there are points on the dice.
- The player who moves the robot and stops on the right square performs the assigned task.
- How did you feel when programming the robot? Why?
- Did you manage to find the right path?
- Was the task interesting for you? Why?
- Which was the most difficult part of the task and why?
- Why was help needed?

Picture cards

The player behind you moves $\mathbf{2}$ spaces forward

Go back to START field

Compliment each player

Hug yourself and tell yourself something nice!

Hug yourself and tell yourself something nice!

Picture cards

Lyrics

If you like this song, give it a clap. If you like this song, give it a clap. If you like this song, sing it all day long. If you like this song, give it a clap.	If you like this song - stamp your feet. If you like this song - stamp your feet. If you like this song, sing it all day long. If you like this song - stamp your feet. .
If you like this song, shout Hurray! If you like this song, shout Hurray! If you like this song, sing it all day long. If you like this song, shout Hurray!	If you like this song, sing again. If you like this song, sing again. If you like this song, sing it all day long. If you like this song - sing again!

While programming the robot find the right path from arrow to arrow.

Calculation, logical thinking, cooperation

30 mins.

Robot, robot grid, arrow cards, picture cards, markers, tablets.

Getting started: children prepare a mat for the robot - they arrange the pictures on the robot's grid according to the given example. You need to find a way, traveling from one picture to another, according to the example on the cards.

Tasks:

- Children use the arrow cards to lay out the path.
- The path is transferred to the robot's CODING environment (using the tablet); BASIC CODING mode is used.
- The robot is connected to a smart device.
- The robot is prepared for drawing, a felt-tip pen is inserted.
- The robot draws a programmed path on the prepared grid.
- How did you feel when programming the robot? Why?
- Did you manage to find the right path?
- Was the task interesting for you? Why?
- Which was the most difficult part of the task and why?
- Why was help needed?

	A	B	C	D	E	F	G
1							
2			0		8	0	
3		0		0			0
4			0	0.2	00	es	
5		8	0		0	0	
6							
7							

Find your way by moving from one picture to another, following the example given:

Picture cards

-

Find the way!

Project No. 612872-EPP-1-2019-1-IT-EPPKA3-PI-FORWARD

Picture cards

Having revised the terms (left, right, up, down, ascending, decreasing) and their values, the students have to create a robot number (form 0 to 9) drawing plot program, where numbers are drawn and arranged in an ascending or descending order.

Grades 1-2, five groups

Mathematics, informatics, arts and technology

1 lesson

Worksheet, A4 sheets, direction cards, 4 color pencils (green, blue, yellow, red), robot, felt-tip pen, tablet.

- Getting started: grouping, revision of key concepts (left, right, up, down, ascending, descending), a brief presentation of the task, a reminder on how to link the robot with the tablet.

Tasks:

- The group receives a worksheet with two written numbers on a checkered paper. One number code is written with errors which students need to find and correct, another number - they need to write the code themselves.
- By sharing the work in a group, students create a digital drawing algorithm and search for errors in the program code.
- The numeric code for the robot is written only in the specified colors and directional arrows (as shown on the robot), arrow cards are available.
- The code is transferred to Mind Designer CODING environment (on the tablet), the ADVANCED CODING mode is used.
- The program for each digit is saved under a separate name.
- The robot is paired with a smart device.
- The numbers are printed on individual A4 sheets.
- A numeric code is glued next to the drawn number (the errors should be highlighted).
- The work of the group is presented in a numerical order, finding the correct position for each number (ascending or descending).
*** If the group did the work quickly, the teacher may offer students to improve the given numbers, e.g. add more details and then having transfered to the app code, draw those numbers using the robot.
- How did you decide what role you would play in the group?
- Which was easier - find the error or write a new code for a number? Why?
- Was the numeric code written immediately?
- How did you improve your program?
- Is it possible to draw the same digit using a differently written program code? Why?
- Where did you need the help most? Who helped?

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
Check the program code of the circled number. X marks the robot's STARTING POINT. When working together, find, mark, and correct the mistakes. DRAW a number on the sheet using the robot.

Corrected Code:

TASK 2
Using the robot programming environment CODING, select the mode ADVANCED. Create an algorithm for the robot to draw the specified number. SAVE the program. DRAW the number on the sheet using the robot.

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
Check the program code of the circled number. \mathbf{X} marks the robot's STARTING POINT. When working together, find, mark, and correct the mistakes. DRAW a number on the sheet using the robot.

Corrected Code :
Bugs found:

TASK 2

Using the robot programming environment CODING, select the mode ADVANCED. Create an algorithm for the robot to draw the specified number. SAVE the program. DRAW the number on the sheet using the robot.

\square

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
Check the program code of the circled number. X marks the robot's STARTING POINT. When working together, find, mark, and correct the mistakes. DRAW a number on the sheet using the robot.

Corrected Code :

TASK 2

Using the robot programming environment CODING, select the mode ADVANCED. Create an algorithm for the robot to draw the specified number. SAVE the program. DRAW the number on the sheet using the robot.

TASK 1
Check the program code of the circled number. X marks the robot's STARTING POINT. When working together, find, mark, and correct the mistakes. DRAW a number on the sheet using the robot.

Corrected Code :

Bugs found:

TASK 2
Using the robot programming environment CODING, select the mode ADVANCED. Create an algorithm for the robot to draw the specified number. SAVE the program. DRAW the number on the sheet using the robot.

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
Check the program code of the circled number. X marks the robot's STARTING POINT. When working together, find, mark, and correct the mistakes. DRAW a number on the sheet using the robot.

Corrected Code :

Bugs found:

TASK 2

Using the robot programming environment CODING, select the mode ADVANCED. Create an algorithm for the robot to draw the specified number. SAVE the program. DRAW the number on the sheet using the robot.

\square

TASK 3

Glue the numeric code on the sheet of paper next to the drawn number.

TASK 4
Present the group work in a sequence of numbers by finding that number an appropriate location (in an ascending or descending order).

TASK 5

As you work together, MODIFY your NUMBER on a checkered paper, mark the START POINT (X).

Create an algorithm for the robot to draw the MODIFIED number.
SAVE the program.
DRAW the number on the sheet using the robot.

Having revised the terms (left, right, up, down, top, bottom) and their values, the students have to draw a graphic drawing according to the given instructions; the code should be changed so that the robot can draw the drawing.

Grades 2-3, four groups

Mathematics, informatics, arts and technology

1-2 lessons

Worksheet, A3 sheet, direction cards, grey pencil, 4 colour pencils (green, blue, yellow, red), direction cards, robot, felt-tip pen, tablet.

- Getting started: grouping, revision of key concepts (left, right, up, down, top, bottom), a brief presentation of the task, a reminder on how to link the robot with the tablet.

Tasks:

- Firstly the students divide into roles: draftsman, teacher, examiner, programmer, etc., after that students perform a graphic dictation following the marked point with arrows and numbers to find out what drawing is encoded on the sheet.
- When checking the drawing code students supplement it or change it so that the drawing itself could be drawn by a robot.
- The code for the robot is written only in the specified colors and direction arrows (such as those shown on the robot), it is suggested to use arrow cards (included).
- The revised code is transferred to the Mind Designer robot CODING environment (on the tablet) using ADVANCED CODING mode.
- The created programme is saved.
- \quad The robot is paired with a smart device.
- The encoded drawing is drawn on the A3 sheet by a robot.
- A graphic dictation and the drawing code are glued next to the drawing.
- Group work is presented to classmates at RoboArt gallery.
*** If the group did the work quickly, the teacher may offer them to create their own drawing on a checkered paper, write the drawing code for the robot (in a language understandable for the robot) and draw it.
- How did you decide what role you would play in the group?
- Why did you have to change the graphic dictation code?
- How was the graphic dictation code different from the robot code?
- Did you succeed to write the code for the robot immediately?
- Where did you need the help most? Who helped?

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
As you work together, using a PENCIL start from the marked point (x) and follow the ARROWS and NUMBERS to find out what drawing you get.

$1 \uparrow$	$2 \leftarrow$	$3 \uparrow$	$1 \leftarrow$	$3 \downarrow$	$2 \leftarrow$	$1 \uparrow$	$1 \rightarrow$	$5 \uparrow$
$2 \leftarrow$	$1 \uparrow$	$3 \rightarrow$	$1 \uparrow$	$1 \leftarrow$	$3 \uparrow$	$3 \rightarrow$	$3 \downarrow$	$1 \leftarrow$

$1 \downarrow \quad 3 \rightarrow \quad 1 \downarrow \quad 2 \leftarrow \quad 5 \downarrow \quad 1 \rightarrow$

TASK 2

Correct the CODE of the drawing so that it can be drawn by the robot. Write down the CODE with the appropriate COLOR and DIRECTION arrows (you can use arrow cards).

The corrected code:

TASK 3

Using the CODING environment select the ADVANCED mode.
Create an algorithm for drawing. SAVE the program. Set the robot to DRAW the drawing on a sheet of paper.

Glue the code and a hand drawn example with a code on the sheet next to the drawing drawn by the robot.

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
As you work together, using a PENCIL start from the marked point (x) and follow the ARROWS and NUMBERS to find out what drawing you get.

$3 \uparrow$	$3 \rightarrow$	$3 \downarrow$	$1 \rightarrow$	$5 \uparrow$	$1 \rightarrow$	$1 \uparrow$	$1 \leftarrow$	$1 \downarrow$
$4 \leftarrow$	$5 \uparrow$	$1 \rightarrow$	$1 \uparrow$	$1 \leftarrow$	$1 \downarrow$	$3 \leftarrow$	$2 \downarrow$	$2 \rightarrow$

TASK 2

Correct the CODE of the drawing so that it can be drawn by the robot. Write down the CODE with the appropriate COLOR and DIRECTION arrows (you can use arrow cards).

The corrected code:

TASK 3

Using the CODING environment select the ADVANCED mode.
Create an algorithm for drawing. SAVE the program. Set the robot to DRAW the drawing on a sheet of paper.

Glue the code and a hand drawn example with a code on the sheet next to the drawing drawn by the robot.

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
As you work together, using a PENCIL start from the marked point (x) and follow the ARROWS and NUMBERS to find out what drawing you get.

$3 \rightarrow$	$6 \downarrow$	$2 \rightarrow$	$4 \uparrow$	$4 \rightarrow$	$4 \downarrow$	$2 \rightarrow$	$2 \uparrow$	$4 \rightarrow$
$2 \downarrow$	$1 \rightarrow$	$1 \downarrow$	$2 \leftarrow$	$2 \uparrow$	$2 \leftarrow$	$2 \downarrow$	$4 \leftarrow$	$4 \uparrow$
$2 \leftarrow$	$4 \downarrow$	$4 \leftarrow$	$5 \uparrow$	$2 \leftarrow$	$2 \uparrow$			

TASK 2

Correct the CODE of the drawing so that it can be drawn by the robot. Write down the CODE with the appropriate COLOR and DIRECTION arrows (you can use arrow cards).

The corrected code:

TASK 3

Using the CODING environment select the ADVANCED mode.
Create an algorithm for drawing. SAVE the program. Set the robot to DRAW the drawing on a sheet of paper.

Glue the code and a hand drawn example with a code on the sheet next to the drawing drawn by the robot.

WORKSHEET

	Group name
Organizer	
Programmer	
Bug fixer	

TASK 1
As you work together, using a PENCIL start from the marked point (x) and follow the ARROWS and NUMBERS to find out what drawing you get.

$2 \rightarrow$	$4 \downarrow$	$1 \rightarrow$	$2 \uparrow$	$1 \rightarrow$	$1 \uparrow$	$4 \rightarrow$	$1 \downarrow$	$1 \rightarrow$
$3 \downarrow$	$1 \leftarrow$	$1 \downarrow$	$1 \leftarrow$	$1 \uparrow$	$4 \leftarrow$	$1 \downarrow$	$1 \leftarrow$	$1 \uparrow$
$1 \leftarrow$	$3 \uparrow$	$1 \leftarrow$	$2 \uparrow$					

TASK 2

Correct the CODE of the drawing so that it can be drawn by the robot. Write down the CODE with the appropriate COLOR and DIRECTION arrows (you can use arrow cards).

The corrected code:

TASK 3

Using the CODING environment select the ADVANCED mode.
Create an algorithm for drawing. SAVE the program. Set the robot to DRAW the drawing on a sheet of paper.

Glue the code and a hand drawn example with a code on the sheet next to the drawing drawn by the robot.

WORKSHEET

Group name

TASK 4-a
As you work together, create a new drawing, mark the start point (\mathbf{x}). TRANSFER the drawing to another team.

WORKSHEET

TASK 4-b
Using the CODING environment select the ADVANCED mode.
Create an algorithm for drawing you get from another teem. SAVE the program. Set the robot to DRAW the drawing on a sheet of paper.

The code:

TASK 5

Glue the code and a hand drawn example on the sheet next to the drawings drawn by the robot.

Present your drawings to other teems at RoboArt gallery.

QUESTIONS?

- How did you decide what role you would play in the group?
- Why did you have to change the graphic dictation code?
- How was the graphic dictation code different from the robot code?
- Did you succeed to write the code for the robot immediately?
- Where did you need the help the most? Who helped?

Codes for drawings

ROBOT
-TL-

$$
1 \downarrow 1 \curvearrowleft 2 \uparrow 1 \Leftrightarrow 3 \uparrow 1 \curvearrowleft 1 \uparrow 1 \leftrightarrow 3 \downarrow 1 \curvearrowleft 2 \uparrow 1 \leftrightarrow 1 \uparrow 1 \Leftrightarrow
$$

$$
1 \uparrow 1 \curvearrowleft 5 \uparrow 1 \curvearrowleft 2 \uparrow 1 \leftrightarrow 1 \uparrow 1 \leftrightarrow 3 \uparrow 1 \curvearrowleft 1 \uparrow 1 \curvearrowleft 1 \uparrow 1 \leftrightarrow
$$

$$
3 \uparrow 1 \leftrightarrow 3 \uparrow 1 \leftrightarrow 3 \uparrow 1 \rightarrow 1 \uparrow 1 \curvearrowleft 1 \uparrow 1 \curvearrowleft 3 \uparrow 1 \leftrightarrow 1 \uparrow 1 \rightarrow
$$

$$
2 \uparrow 1 \curvearrowleft 5 \uparrow 1 \curvearrowleft 1 \uparrow
$$

$\begin{array}{ccccccccc}1 \downarrow & 2 \leftarrow & 3 \uparrow & 1 \leftarrow & 3 \downarrow & 2 \leftarrow & 1 \uparrow & 1 \rightarrow & 5 \uparrow \\ 2 \leftarrow & 1 \uparrow & 3 \rightarrow & 1 \uparrow & 1 \leftarrow & 3 \uparrow & 3 \rightarrow & 3 \downarrow & 1 \leftarrow\end{array}$ $1 \downarrow \quad 3 \rightarrow \quad 1 \downarrow \quad 2 \leftarrow \quad 5 \downarrow \quad 1 \rightarrow$

GIRAFFE
$\curvearrowleft \uparrow \downarrow \rightarrow$
$3 \uparrow 1 \rightarrow 3 \uparrow 1 \curvearrowleft 3 \downarrow 1 \Leftrightarrow 1 \uparrow 1 \curvearrowleft 6 \uparrow 1 \Rightarrow 1 \uparrow 1 \curvearrowleft 1 \downarrow 1 \curvearrowleft$
$5 \uparrow 1 \nrightarrow 6 \uparrow 1 \nrightarrow 1 \uparrow 1 \curvearrowleft 1 \downarrow 1 \curvearrowleft 4 \uparrow 1 \nrightarrow 2 \downarrow 1 \leftrightarrow 2 \uparrow 1 \curvearrowleft$
$8 \downarrow 1 \propto 1 \uparrow$
$\begin{array}{lllllllll}3 \uparrow & 3 \rightarrow & 3 \downarrow & 1 \rightarrow & 5 \uparrow & 1 \rightarrow & 1 \uparrow & 1 \leftarrow & 1 \downarrow \\ 4 \leftarrow & 5 \uparrow & 1 \rightarrow & 1 \uparrow & 1 \leftarrow & 1 \downarrow & 3 \leftarrow & 2 \downarrow & 2 \rightarrow\end{array}$ $8 \downarrow 1 \rightarrow$

Codes for drawings

SNAKE

$\square \uparrow \downarrow \rightarrow$								
$1 \rightarrow 3 \uparrow 1 \curvearrowleft 6 \downarrow 1 \leftrightarrow 2 \uparrow 1 \curvearrowleft 4 \uparrow 1 \rightarrow 4 \uparrow 1 \curvearrowleft 4 \downarrow 1 \Leftrightarrow 2 \uparrow$								
$1 \curvearrowleft 2 \uparrow 1 \leftrightarrow 4 \uparrow 1 \curvearrowleft 2 \downarrow 1 \rightarrow 1 \uparrow 1 \curvearrowleft 1 \downarrow 1 \curvearrowleft 2 \uparrow 1 \sim 2 \uparrow$								
$1 \curvearrowleft 2 \uparrow 1 \Leftrightarrow 2 \downarrow 1-4 \uparrow 1 \leftrightarrow 4 \uparrow 1 \curvearrowleft 2 \uparrow 1 \leftrightarrow 4 \downarrow 1 \leftarrow 4 \uparrow$								
$1 \leftrightarrow 5 \uparrow 1 \curvearrowleft 2 \uparrow 1 \leftrightarrow 2 \uparrow$								
$3 \rightarrow$	$6 \downarrow$	$2 \rightarrow$	$4 \uparrow$	$4 \rightarrow$	$4 \downarrow$	$2 \rightarrow$	$2 \uparrow$	$4 \rightarrow$
$2 \downarrow$	$1 \rightarrow$	$1 \downarrow$	$2 \leftarrow$	$2 \uparrow$	$2 \leftarrow$	$2 \downarrow$	$4 \leftarrow$	$4 \uparrow$
$2 \leftarrow$	$4 \downarrow$	$4 \leftarrow$	$5 \uparrow$	$2 \leftarrow$	$2 \uparrow$			

$1 \rightarrow 3 \uparrow 1 \curvearrowleft 6 \downarrow 1 \leftrightarrow 2 \uparrow 1-4 \uparrow 1 \rightarrow 4 \uparrow 1 \curvearrowleft 4 \downarrow 1 \leftrightarrow 2 \uparrow$ $1 \curvearrowleft 2 \uparrow 1 ヵ 4 \uparrow 1-2 \downarrow 1 \rightarrow 1 \uparrow 1 \curvearrowleft 1 \downarrow 1 \curvearrowleft 2 \uparrow 1 \rightarrow 2 \uparrow$ $1 \curvearrowleft 2 \uparrow 1 ヵ 2 \downarrow 1-4 \uparrow 1 \Leftrightarrow 4 \uparrow 1-2 \uparrow 1 \Leftrightarrow 4 \downarrow 1-4 \uparrow$ $1 ヵ 5 \uparrow 1 \curvearrowleft 2 \uparrow 1 ヵ 2 \uparrow$

TURTLE
$\rightarrow \uparrow \downarrow \rightarrow$
$1 ヵ 2 \uparrow 1-4 \downarrow 1 \nrightarrow 1 \uparrow 1 \curvearrowleft 2 \uparrow 1 \Rightarrow 1 \uparrow 1 \curvearrowleft 1 \uparrow 1 \rightarrow 4 \uparrow$ $1 \curvearrowleft 1 \downarrow 1 \curvearrowleft 1 \uparrow 1 \curvearrowleft 3 \downarrow 1 \curvearrowleft 1 \uparrow 1 \curvearrowright 1 \downarrow 1 \curvearrowleft 1 \uparrow 1 \curvearrowleft$ $1 \uparrow 1 \curvearrowleft 4 \uparrow 1 \rightarrow 1 \downarrow 1 \curvearrowleft 1 \uparrow 1 \rightarrow 1 \uparrow 1 \curvearrowleft 1 \uparrow 1 \rightarrow 3 \uparrow 1 \curvearrowleft$ $1 \uparrow 1 \rightarrow 2 \uparrow$

$2 \rightarrow$	$4 \downarrow$	$1 \rightarrow$	$2 \uparrow$	$1 \rightarrow$	$1 \uparrow$	$4 \rightarrow$	$1 \downarrow$	$1 \rightarrow$
$3 \downarrow$	$1 \leftarrow$	$1 \downarrow$	$1 \leftarrow$	$1 \uparrow$	$4 \leftarrow$	$1 \downarrow$	$1 \leftarrow$	$1 \uparrow$
$1 \leftarrow$	$3 \uparrow$	$1 \leftarrow$	$1 \uparrow$					

Author: Expert primary education teacher and career education specialist ASTA SAKALIENÉ Panevėžys VILTIES Progymnasium

Working in pairs analyze the robot's path algorithm and program the robot; by studying the illustrations determine what materials the objects are made of.

2nd
grade

Science, information technologies, career education

45 mins.

Robot, game mat, arrow cards, worksheet, answer sheet, picture cards, question cards.

- Getting started: The students discuss the objects surrounding them, what materials are the objects in the classroom made of, which materials are natural and which are artificial. The teacher presents some examples of things that are made of not one, but several materials. The specific items in the class are grouped into wooden, rubber, ceramic, cotton, metal, plastic, glass.

Tasks:

- The students are divided into pairs (the game Say hello: students freely walk around the classroom shaking each other's hand in a friendly way and saying something nice; after the signal, the last friend they said hello to is the one they work with in a pair), after being paired the students discuss their roles, the lesson topic is announced, the teacher reminds the students how to program a robot and briefly presents the tasks stating the expectations of the lesson.
- Students work in pairs. After analysing the algorithms of the robot's path on the worksheet, they write down their guesses, program the robot to drive to the questions. The students look for answers on the game mat and program the robot to reach it. Students take notes in the worksheet and mark if they managed to program the robot correctly from the first try, they also write down the letter that is written next to the picture.
- Students who work faster are offered to answer questions D1 and A3, and provide examples of objects.
- After completing the tasks, the students count and note on the worksheet at the bottom of the table how many correct guesses there were in total, which number they circled the most (how many times they tried to program the robot correctly).
- When the answer table is shown, students check whether they have completed the task correctly by correcting mistakes with a green pen. Attention is drawn to the last column. If they answered all the questions correctly, they will read the word "Features". It is informed that the topic of the next science lesson will be "Features of materials".
- A pair of students presents their work, describes how they managed to complete the tasks together.
- Homework assignment: Take a picture of an object that is made of 3 or more different materials, e.g., a table lamp made of metal, plastic and glass.
- Did you manage to answer all seven questions? Did you answer the two additional questions?
- Which question was the most difficult or the easiest one? Why?
- How did you succeed to decode the robots' path algorithms and to program the robot?
- How will this lesson be useful in the future?
- What did you learn from working together with a friend?

The first example on the worksheet can be done together to make sure that all students understand what needs to be done. In the next lesson, the students will learn to group objects made of the same material, name the properties (attributes) of materials, group materials according to their properties, find out under what conditions the properties of materials can change (heating, melting, burning).

		¿łsom әчł әјગ！ р！p дəqunи чગ！чМ		¿¡！ u！sessən6 ұכә．．ıо Kиеш мон		
	ε 乙 レ					L
	ε 乙				$\square \Delta \Delta \square \square$	＇9
	を 乙 レ					G
	ε 乙					－
	を 乙				[ε
	を 乙 レ					＇
	\＆乙 レ					\cdots
${ }^{*} \mathrm{xoq}$ „ $\mu \mathrm{Pl} \mathrm{IS}_{\mathrm{n}}$ 	－дәqunи ұәәдоэ 아 əదеuew noर p！0	－әәмsue әцł su！̣ęuoo ұецł（દכ бә） әЧł имор ә！！！ММ	$+!$ ！уеш 	＇とう ${ }^{6}$ •ə ‘ssən6 ıno人 имор ә！！мм pue дәчı чэеә ן．nsuoう		－ ON
－\quad anı！ әчł Оㄱ ¥xәu xoq łецł u！ 	xoq әपł le dols 	＊xоq łечł u！uo！！səənb әપł peәу	＇70q0．әपł meaboud	¿아 O6 poqos ӘЧł ॥！М ॥əつ р！ムБ чગ！ЧМ		

		¿łsom әчł әэл p！p лəqunu Чગ！ЧМ		 u！sessən6 ұәәдоэ Kuew moh		
Sヨ	を 乙	てヨ		$L \forall$		＇L
Y	ε 乙	15		$\nabla \forall$		9
ก	ε 乙	ヤコ		Z		＇G
\perp	ε 乙	ZV		$\varepsilon \pm$		$\stackrel{ }{ } \downarrow$
\boldsymbol{V}	ε 乙	\mathcal{E}		レヨ		ε
\exists	ε 乙	レコ		ヤヨ		＇
\pm	\＆乙 レ	ヤ8		28		＇ 1
xoq＂मels．＂ 	 łoqoı әપł سeıboıd 아 ә6еueu no人 p！o	－әммиие әцд ॥əつ әЧł ІО sәңеu！pı00э әЧъ имор әџ！！М	＋！！улеш 	＇६ว $6 \cdot$ ə ＇ssən6 ano人 имор ә！بмм 		$\cdot \mathrm{ON}$
ә૫ł ОІ ¥xәu xоq łецł u！ 	－ләмsue әцұ бu！̣и！̣еұиоэ xoq әчł łe dołs 아 łOqO』 ә૫ł meabosd	‘xоq ¥ечł u！uolıısənb әчł peәу	＇łoqos әut meaboud	¿아 O6 әЧł ॥！М ॥әЈ рйБ чગ！ЧМ		

(2)

Picture cards

Which item is made using this material?

Question cards

Which object is made of only	
sand and chalk?	Which item does not use metal, ceramics, water, or wool in its production?
Which object is made only of	
metal?	Which item does not use glass, rubber, wood, metal, food, or plastic?
Which object is made only	
using glass?	In the production of which item, glass is one of the components?

Author: Expert primary education teacher JOLANTA ANDRIUŠKEVIČIENÉ
Panevėžys district Velžys Gymnasium

Working together in pairs or groups, perform calculations and create suitable algorithms according to the given descriptions.

3rd-4th grade

Mathematics, information technologies

45 mins.

Robots, number grid, worksheets.

Getting started: students divide into pairs or groups; they prepare robots and the grid of numbers. Worksheets are distributed.

Tasks:

- The purpose of the activity is introduced.
- Cooperating with each other the students perform calculations according to the given descriptions.
- Appropriate algorithms are created.
- Comment on each group member's contribution to the task.
- What did you enjoy? What difficulties did you face?
- Review your numeracy skills.
- How did you understand the concepts?
- Describe your feelings. If necessary, use a mood meter.

Task cards

TASK 1
Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

The units digit is the product of 2 and 3 , the tens digit is the quotient of 27 and 9.

TASK 2

Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.
The tens digit is the difference of 19 and 15, the units digit is the sum of 3 and 2.

TASK 3
Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

The number is even. The tens digit is $\mathbf{2}$ times smaller than the units digit.

TASK 4

Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

The number is odd. The tens digit is 2 times bigger than the units digit.

TASK 5

Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

The smallest one-digit number.

TASK 6
Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

The difference between the largest two-digit number and the product of 23 and 3.

Task cards
TASK 7
Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.
The quotient of the difference between the largest three-digit number and the smallest two-digit number and the number 90.

TASK 8

Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.

A two-digit number in which both digits are odd numbers.

TASK 9

Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.
A number that is obtained by adding two equal odd two-digit numbers. .

TASK 10
Working individually, according to the given description, perform the calculations. Compare answers with your group mates. Using arrow cards make an algorithm - the path for the robot to reach the right number.
A two-digit number is equal to the product of odd one-digit numbers.

Author: Expert primary education teacher JOLANTA ANDRIUŠKEVIČIENÉ
Panevėžys district Velžys Gymnasium

Working cooperatively students recognize different objects based on given angles.

3rd-4th grade

Mathematics, information technologies

45 mins.

Robots, number grid, worksheets.

- Getting started: students divide into pairs or groups; they prepare robots and the grid of numbers. Worksheets are distributed.

Tasks:

- The purpose of the activity is introduced.
- Working cooperatively students recognize different objects based on given angles.
- Appropriate algorithms are created.
- Comment on each group member's contribution to the task.

- What did you enjoy? What difficulties did you face?
- Evaluate how you succeeded to identify the given angles.
- Describe your feelings. If necessary, use a mood meter.

Task cards

TASK 1

Which robot grid picture has $\mathbf{1 2}$ corners?

Using the direction arrows, make an algorithm - a path to the right object.

TASK 2

Which robot grid picture has 4 sharp corners?

Using the direction arrows, make an algorithm - a path to the right object.

TASK 3

Which robot grid picture has 4 steep angles?

Using the direction arrows, make an algorithm - a path to the right object.

TASK 4

Which robot grid picture has 4 obtuse angles?

Using the direction arrows, make an algorithm - a path to the right object.

TASK 5
Which robot grid picture doesn't have 4 obtuse angles?
Using the direction arrows, make an algorithm - a path to the right object.

TASK 1

Air-balloon

TASK 2

Ship

TASK 3
Christmas tree

TASK 4

Fish

TASK 5
House/ Christmas tree

Author: Expert primary education teacher JOLANTA ANDRIUŠKEVIČIENÉ
Panevėžys district Velžys Gymnasium

Working together in pairs or groups, calculate numerical phenomena and create suitable algorithms.

45 mins.
information technologies

Robots, number grid, worksheets.

Getting started: students divide into pairs or groups; they prepare robots and the grid of numbers. Worksheets are distributed.

Tasks:

- The purpose of the activity is introduced.
- The meaning of numerical phenomena is clarified through working cooperatively.
- Appropriate algorithms are created - arrow paths to the appropriate value of the numeric expression.
- Comment on each group member's contribution to the task.

5

- What did you enjoy? What difficulties did you face?
- Review your solving numerical phenomena and calculation skills.
- Describe your feelings. If necessary, use a mood meter.

Task cards
TASK 1
Calculate the value of a numerical expression individually. Compare answers with your group mates. Create an algorithm - the robot's path using arrows to the correct value of a numerical expression.

$10000-860: 2 \times 10-5640=$

TASK 2

Calculate the value of a numerical expression individually. Compare answers with your group mates. Create an algorithm - the robot's path using arrows to the correct value of a numerical expression.

$84-(54-45) \times 6=$

TASK 3

Calculate the value of a numerical expression individually. Compare answers with your group mates. Create an algorithm - the robot's path using arrows to the correct value of a numerical expression.
$(92-89) \times(63: 9)=$

TASK 4
Calculate the value of a numerical expression individually. Compare answers with your group mates. Create an algorithm - the robot's path using arrows to the correct value of a numerical expression.
$3+6 \times 8-15=$

TASK 5

Calculate the value of a numerical expression individually. Compare answers with your group mates. Create an algorithm - the robot's path using arrows to the correct value of a numerical expression.

$2500: 50+100: 2-535=$

Answers

1. $10000-860: 2 \times 10-5640=60$

2. $84-(54-45) \times 6=30$
3. $(92-89) \times(63: 9)=21$
4. $3+6 \times 8-15=36$
5. $2500: 50+100: 2-535=15$

Authors:

Librarian LAURA ŠINKŪNIENĖ Methodologist primary education teacher ALMA BRIEDIENÉ Panevėžys district Naujamiestis School

Having learnt about the causes of fear and anxiety, through team collaboration, create an algorithm for overcoming fear.

4th-6th grade

Science, moral education, informational
technologies

60-90 mins.

Robots, 2 robot grids, cards: "Fear Train", "Travel diary", "Suitcases", "Algorithm for overcoming fear", two envelopes, two-color stripes, 3-4 m bright rope, 10 pcs. clothespins, sticky rubber, stickers.

Getting started: firstly find out how students understand the concept of "fear", in which situations have they felt fear, or do they often experience fear, anxiety or stress at school. Then the game "The Train of Fear" is being played.

Tasks:

- After finding out the personal moment of feeling fear, it is suggested to find a "travel buddy" (two colour ribbons tied in the middle are used - use as many colors as there will be teams, e.g. green-red, blue-yellow, greenyellow, etc.) The strips are held in the fist so that it is not visible that different colours are tied together. The players are asked to select one strip and hold it in the hand. While everyone is holding the strips, questions can be asked: did you choose the same colour strip as your friend? Why? Maybe s/he wanted to be braver? Safer? Then the players are asked to find a friend slowly without letting go of the strip. The players are divided into teams according to the drawn out colours.
- The teams are given the envelopes with the tasks "Suitcases" or "Fear defeating algorithm.
- Team members collaboratively develop the specified algorithm and test it programming the robot on the robot grid specified in the task.
- Team members collaboratively develop the specified algorithm and test it programming the robot on the robot grid specified in the task.
- The players individually fill in the "Travel Diary".
- For the feedback the cards are used on the robot's grid (or board) to which students add their observations:
- I TAKE IT NOW
- I SAVE IT FOR THE FUTURE
- I THROW IT AWAY or I RECYCLE.

- Did all of you get off at the same stop on the Fear Train trip? Why?
- How did you feel working in a team? Did you follow the rules when completing the task?
- Which part of the assignment was the most difficult? How did you find the solution?
- What helps to manage the fear?
- When do we feel safer in class?

The work can be organized taking into account the age of the students, teams numbers, robot skills. Tasks can be divided into parts, more situations can be added.

Folding diagram of the "Travel Diary"

3.

4.

5.

Game - The Train of Fear

Imagine that you alone have to go on a train trip at midnight and come home from a station on foot.

Choose a moment when fear overcomes you (when you want to stop and discontinue travel), then come and stand up near selected card in a scale of fear.
(The "Fear Train" situation cards are read one by one and pinned on the stretched rope using the pins. The text should be read slowly, giving the time for students to assess their fear level and choose a place on the "fear scale".)

1. I'm alone on a platform at midnight and waiting for a train...
2. I get in the train and sit solitary...
3. At the next stop all passengers get off, I'm staying alone...
4. I get off, it is dark around, no living spirit...
5. I hear steps behind my back, 「m going to go faster...
6. Someone, who follows me, also starts going faster...
7. I go to the next side of the road, someone follows me...
8. I look back and see that husky man is following me...
9. I'm almost running, the man comes up and touches my shoulder...

- Maybe, somebody wants to finish his/her journey right now?
- Perhaps there are passengers who want to change their choice?

Here is proof that we all are different and our reactions are different, too. There are people who would never travel at night, there are people who will travel by train, but when they go off,they won't go on foot and so on. Different people different moments sensation of fear.

İm alone on a platform at midnight and waiting

 for a train...[^0]
I get off, it is dark around, no living

 spirit...
I hear steps behind my

back, I’m going to go

faster...

Someone, who follows me, also starts going

faster...

Cards - The Train of Fear

I look back and see that

 husky man is following

Task - Suitcases

- Working together and following the specified rules, with the help of the robot sort the cards into two bags:
- BAGGAGE OF FEAR and
- TRIP WITHOUT STRESS.
- The robot only travels through EMPTY cells.
- Create a staging of the trip (act it out) and present it.

RULES:

- Work is shared by all team members.
- Everyone is responsible both for her/himself and for the whole team.
- Everyone helps the team to complete the task.
- The work is presented by the whole group.

Task cards - Suitcases

TRAVEL ALONE

TRAVEL WITH FRIEND

I AM DOING THAT

CONSTANTLY
I AM DOING

WELL KNOWN TRAVEL GOAL

OTHER TYPE OF

 TRANSPORTThe Algorithm of Fear

Notes

Situation cards are shuffled and placed in any order. The robot only drives through empty cells. The sorted card is "transported" by sticking it with an adhesive rubber to the robot.

- What helps to manage fear? (discussion, possible conclusions)
- It is safer to travel with a friend.
- When I have tools to help me in a critical moment, I gain courage.
- It is very important to have a purpose (for example, I am going to visit
- a sick friend and maybe this is the last chance to meet him).

Task "Algorithm for overcoming fear"

Working together and following the given rules, create THE ALGORITHM FOR OVERCOMING FEAR:

- In the robot grid find the cards to help you cope with fear in class and stick a green sticker on them.
- Use the arrows to write the shortest path and pass it with the robot (all boxes on the robot's path must be marked with stickers).
- Comment your choice.

THE ALGORITHM FOR OVERCOMING FEAR:

RULES:

- Work is shared by all team members.
- The section of the road to the selected card is programmed by each team member.
- Everyone is responsible both for her/himself and for the whole team.
- Everyone helps the team to complete the task.
- The work is presented by the whole group.

Robot grid for the ALGORITHM FOR OVERCOMING FEAR task

Coordinates of the boxes marked with stickers (write down):

Cards for the ALGORITHM FOR OVERCOMING FEAR task

> I'm not asking because others think that I am know-nothing

Teachers and
parents are waiting / hoping for the best results, I can't disappoint them...

Everybody obey /

 have to agree with group leaderIn the group, we decide how we will achieve the learning goals

I can help others; By helping friends I learn better

I am responsible only for myself in a team

The situation cards are shuffled and arranged in such a way that the fear overcoming tips would be arranged in a circle in the robot grid.

- When do I feel safer in class? (discussion, possible conclusions)
- I feel safer in class when I know I have a chance to get support.
- I feel safer in class when I can help, I feel needed.
- I can overcome my difficulties and fears when a common goal is achieved.
- Joy shared with friends doubles, and fears - dissolves.
- Prosocial behaviour motivates personality growth and strengthens it.

Užduoties „Baimès nugalèjimo algoritmas" kortelès

Studying alone

Everything have to find out myself

Mistakes will determine my evaluation

I feel safer when I study with a friend (in a group)

I can and am not afraid to ask friends or teachers for help

I am not afraid to make mistakes my group mates will give me advice;
Mistakes help us improve

Robot grid for the ALGORITHM FOR OVERCOMING FEAR task (ANSWER):

Coordinates of the boxes marked with stickers (ANSWER):

B5 $\rightarrow \mathrm{A} 4 \rightarrow \mathrm{~B} 3 \rightarrow \mathrm{C} 2 \rightarrow$ D2 $\rightarrow \mathrm{E} 3 \rightarrow \mathrm{~F} 4 \rightarrow \mathrm{E} 5$

The Algorithm of Fear

Feedback cards

 $\begin{array}{ll}\text { waiting for a train. } & \text { WHY? } \\ \text { 2. I get in the train and sit solitary. } & \end{array}$ 1. I'm alone on a platform at midnight and :Sd3lS ******
 moment when fear overcomes you, then
stand up near selected card in a SCALE OF

 PROCESS: Imagine, that you alone have to
 THE TRAIN OF FEAR
Objective: Think abo

SUITCASES

 $\underset{* * *}{\text { and touches my shoulder }}$

 SUITCASES
Objective: Working in a team think about reasons, which make feel safe on a trip.

TASK: Create safe and unsafe travel presentation.

Put cards into two suitcases:
*Suitcase "Baggage of Fear" OR
*Suitcase "Trip without stress"
Well kn / * flashlight / * night /

* travel alone / * smartphone / * day
* I am doing that first time / * trave
friend / * unknown travel goal /
* other type of transport /

COMMUNITY ALGORITHM
IN A ROBOT'S BACKPACK
92

RESOURCES

ILLUSTRATIONS

https://www.vecteezy.com/vector-art/517525-funny-cute-cartoon-characters-robot https://www.nicepng.com/ourpic/u2q8r5o0q8q8e6q8 cute-animal-clipart-for-free-download-animals-clip/
https://www.discoverwildlife.com/animal-facts/mammals/facts-about-zebras/ https://www.worldwildlife.org/species/elephant
[https://www.msaquarium.org/p/animals/animal-guide/bottlenose-dolphins https://www.pestworldforkids.org/pest-guide/bees/
https://www.pestworldforkids.org/pest-info/bug-articles-by-type/how-do-ants-communicate-with-each-other/
https://www.knau.org/knau-and-arizona-news/2017-07-17/group-calls-for-release-of-mexican-gray-wolves-in-new-mexico
https://www.pinterest.com/pin/154318724718886818/
https://www.pinterest.com/pin/12173861482545581/
https://www.pinterest.com/pin/4574037109051366/
https://www.shutterstock.com/search/cute-furry-monster
https://www.pinterest.com/pin/303289356157211775/
https://www.pinterest.com/pin/5911043256990195/
https://www.pinterest.com/pin/1143914374076072083/
[https://www.pinterest.com/pin/351912462150180/
https://www.canva.com/design/DAE2W5d0K6Y/dPWEWdB2Z3Krcre7NAMurg/edit
https://www.pinterest.com/pin/5770305760850262/
https://www.pinterest.com/pin/90635011232544368/
https://www.pinterest.com/pin/90635011232544368/
https://www.pinterest.com/pin/3659243437421823/
https://static.fnac-static.com/multimedia/Images/PT/MC/31/e9/0f/17819953/1507-
1.jpg\#12419552-5162-4132-90e2-b80ffe30a884
https://modopak.It/wp-content/uploads/2016/04/150703 Irani 870.jpg
[https://img.ehowcdn.com/640/cpie/images/a04/e2/qi/draw-ice-cream-800x800.jpg
https://nejcinabytek.s8.cdn-upgates.com/ cache/1/
a/1a9d83e7258165d64eb306507fd6bfe1.jpg
http://bikeservice.It/img/cms/dvira\�\�io\ priekinis\ ratas.jpg
https://res.cloudinary.com/chal-tec/image/upload/w 545,q auto,f auto/bbg/10028601/
Gallery/10028601 yy 0001 titel 01 Blumfeldt Paddington Gartenuhr.jpg
https://www.varle.It/static/uploads/products/898/vyr/vyriskos-vilnones-slepetes-
40 v1tvweQ.jpg

RESOURCES

ILLUSTRATIONS

https://ksd-images.It/display/aikido/store/0b0d9b5a75d03d1aecef851aff0fadab.jpg? h=2000\&w=2000
https://www.aic.It/out/pictures/generated/product/2/665 665 85/035333 esbit-fj1000ml2(2).jpg
https://ae01.alicdn.com/kf/S6b5604e36ef94c0892c8b7a5cdea85a99/Fedora-chap-us-para-mulheres-chap-u-de-inverno-chap-u-de-luxo-vermelho-panamchap.jpg Q90.jpg .webp
https://www.ermitazas.It/out/pictures/generated/product/1/465 465 90/276848.jpg
https://5.imimg.com/data5/BH/PH/MY-16043059/imported-pu-leather-reversible-men-s-belt-inr-150-500x500.jpeg
https://www.vigidaspack.It/image/cache/data/lentos gegnes murlotai /mediniai-tasai-spygliuociu-medienos-pusies-obliuoti-neobliuoti-1-625x400 0.jpg
https://content2.rozetka.com.ua/goods/images/big/238922478.jpg
https://rouzegar.com/wp-content/uploads/2017/09/model-Luminous-shoes-led-rouzegar12.jpg
[https://www.simplewear.gr/media/catalog/product/
cache/5b358825bc91be2c912f890766efc37a/s/a/sakidio-plathw-recycled-roll-top-bag-base-bg286-mustard 1 CM 1627907902.jpg
https://www.ermitazas.It/out/pictures/generated/product/1/700 700 90/106956.jpg https://www.robotshop.com/nl/en/clementoni-mind-designer-robot-toy-french.html https://www.planuokpati.It/straipsniai/perziura/isvyniok-dovana-kol-neiskris-kauliukai https://salkauskis.It/socialinis-emocinis-ugdymas-seu/
https://www.robotshop.com/nl/en/clementoni-mind-designer-robot-toy-french.html

RESOURCES

TEXT
Copley A. Iššūkiai mokykloje. Kaip mokyti problemiško elgesio vaikus. Vilnius: Tyto Alba, 2009.

Makarskaitė-Petkevičienė R., Varnagirienė V., Žemgulienė A. Taip! Vadovèlis. Pasaulio pažinimas 2 klasei. Antra dalis. Kaunas: Šviesa, 2021.
https://builtin.com/robotics/robotics-in-the-classroom
https://knowledge-hub.com/2022/05/20importance-of-robotics-in-education/
https://salkauskis.It/socialinis-emocinis-ugdymas-seu/

APPENDIX

8	7	4	15	21	2	1	24	18	45	30	5	36	3	9	10	6	60
\dot{E}	K	D		S	Š	M	E	P	A	V	I	G	R	T	$\overline{\mathrm{U}}$	U	!

\dot{E}
M
L
E A
R
Ū
D S
B Š
P
I
v
Ž
T
I

8	7	4	15	21	2	1	24	18	45	30	5	36	3	9	10	6	60
\dot{E}	K	D		S	Š	M	E	P	A	V	I	G	R	T	$\overline{\mathrm{U}}$	U	I

Ė
M
L
G
E
K
N
E
A
R
Ū
D S
v
Ž
U
B
š
P
I
T

Enable APP mode on the robot, pair it with your smart device:

Available programming modes : BASIC (line length 15 cm , turning angle 90°) and ADVANCED (line length and turn angle can be adjusted, procedures can be created).

How to SAVE the programme?

NOTE!

The starting direction of the robot is NORTH.

Write all the programs starting from this position.

COMMUNITY ALGORITHM IN A ROBOT‘S BACKPACK
 Metodical Publication

Authors of the book:
Jolanta Andriuškevičienė, Inga Baltrimavičienė, Alma Briedienė, Arnė Budavičienė, Inga Čingienė, Gražina Guobužienė, Laura Oniūnienė, Jelena Kulšinskienė, Gintarė Masiliūnė, Rita Rožėnienė, Asta Sakalienė, Laura Šinkūnienė, Živilė Taločkienė
Layout designer
Laura Šinkūnienė
Language editor - Birutė Goberienė
English Translation
Vaida Šiaučiūnè
2023, Naujamiestis town
Panevėžys District Education Center
Beržų st. 50, 36145 Panevėžys, Lithuania
Panevėžys District Naujamiestis School
S. Dariaus ir S. Girėno g. 52, 38335 Naujamiesčio mstl.,
Panevėžio r., Lithuania

COMMUNITY ALGORITHM

IN A ROBOT'S BACKPACK
METODICAL PUBLICATION

Robotics vs
Bullying

Polo Europeo della Conoscenza

SPAIN

Co-funded by the Erasmus+ Programme of the European Union

ITALY
sinaplice
ROMANIA

FRIENDS OF
EDUCATION
MACEDONIA

BULGARIA

Junta de
Castilla y León
Consejería de Educaciốn
SPAIN

roboticavsbullismo.net

Panevėžys District Education Center Website
prsc.lt
Facebook
facebook.com/prsc.It
Panevėžio rajono švietimo centras
Beržų st. 50, 36145 Panevėžys, Lithuania

[^0]: Cards - The Train of Fear

